
JOURNAL OF COMPUTATIONAL PHYSICS w,28-32 (1992)

An Evaluation of the Sniffer Global Optimization
Algorithm Using Standard Test Functions*

ROGER A.R. BUTLER AND EDWARD E. SLAMINKA

Mathematics Department, Auburn University, Auburn, Alabama 36849-5310

Received June 29, 1990; revised April 5, 1991

favorably with Simulated Annealing. We demonstrate that
The performance of Sniffer-a new global optimization algorithm-is this is, in fact, the case in Section 4, where we compare the

compared with that of Simulated Annealing. Using the number of
function evaluations as a measure of efficiency, the new algorithm is

results of the Sniffer algorithm with those of Simulated

shown to be significantly better at finding the global minimum of seven
Annealing when applied to the test functions of Dixon and

standard test functions. Several of the test functions used have many Szego.
local minima and very steep walls surrounding the global minimum.
Such functions are intended to thwart global minimization algorithms.
0 1992 Academic Press, Inc 2. DESCRIPTION OF THE DONNELLY

AND ROGERS SNIFFER ALGORITHM

1. INTRODUCTION

In 1984, Vanderbilt and Louie [1] described a version of
Simulated Annealing for unconstrained optimization over
continuous variables. To demonstrate the efficacy of their
algorithm, and to compare it with a variety of (then) current
methods, they applied it to the seven test functions
proposed in Dixon and Szego [2]. Since that time,
Simulated Annealing has become the method of choice for
a variety of optimization settings.

In this paper we compare a new global optimizer, Sniffer,
to Simulated Annealing using these same test functions.
The Sniffer algorithm (named by Donnelly whose original
FORTRAN program used a subroutine named SNIFR)
was introduced by Donnelly and Rogers in [6] and has
since been applied, with much success, to a wide class of
optimization problems in engineering and the natural
sciences [4, 5, 3, 7, 83. Some of these problems have over
400 degrees of freedom and contain thousands of local
minima. In Section 2 we present a description of the original
Sniffer algorithm, and in Section 3 we describe an extension
of the algorithm that is capable of altering some of its own
parameters in an attempt to solve individual problems more
efficiently. This algorithm should be considered as one of a
family of possible extensions to or variations on the original
Sniffer algorithm. The purpose of this paper is to
demonstrate that this family of algorithms can provide an
efficient global optimization algorithm that compares

* The authors thank the reviewers for their helpful suggestions.

1X121-9991/92 $3.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

28

In 1981, Griewank [9] developed a global optimizer that
attempted to find the global minimum of a differentiable
objective function by following carefully constructed search
trajectories. If we assume that c is a target level which
is higher than the desired global minimum value of the
objective functionf, then Griewank’s search trajectories are
solutions of the second-order differential equation

x”(t) = -e(z-x’(t)x’T(t))Vf(X(t))
f(x(t)) - c

2 e > 0,

with any initial point (x,,, x&) satisfying f(xO) > c, and
llxb II = 1.

By construction, Griewank’s search trajectories are
solutions of the above differential equation and, as such,
possess several desirable properties, including:

1. Trajectories cannot converge to minima with values
greater than c.

2. If a particle follows a search trajectory, then its speed
at position x(t) is proportional to f(x(t)) - c. Thus, as a
trajectory gets closer to the target level c, the speed at which
it is followed is reduced, and the trajectory does a more
thorough job of minimizing the function f at lower levels.
Conversely, as a trajectory moves further from the target
level c, the speed at which it is followed is increased and so
little time is wasted minimizing the function at higher levels.
When f < c, the technique of following search trajectories
amounts to a local minimization technique.

SNIFFER GLOBAL OPTIMIZATION ALGORITHM 29

3. Trajectories are invariant with respect to translations
of the variables and multiplication of the termf(x(t)) - c by
a positive scalar.

When following one of Griewank’s search trajectories, a
particle will tend to turn towards the negative gradient
direction. The extent to which the gradient influences a
particle’s direction of motion is determined by the gradient
sensitivity parameter e in Griewank’s differential equation.
Larger values of e give rise to trajectories that more closely
follow the gradient of the objective function.

In his paper, Griewank proves that for a certain class of
objective functions, and for appropriate settings of the
parameters e and c, search trajectories satisfying his
differential equation are able to escape local minima and
converge to the global minimum of the objective function.
However, if implemented exactly as described in [9],
Griewank’s algorithm is extremely expensive computa-
tionally since the solution of an ordinary differential equa-
tion must be computed at each step. To overcome this
problem, Donnelly and Rogers [3, 61 introduced a discrete
analog of the algorithm. Their algorithm, which they later
called Sniffer, attempts to find the global minimum of an
objective function by stepping along discrete analogs of
Griewank’s search trajectories.

In its barest form the Sniffer algorithm can be described
as follows: let x0 be an initial position and let do be an initial
unit direction vector. Let E be a gradient sensitivity
parameter similar in effect to Griewank’s e parameter, and
let p be a step size parameter which will be used to determine
the size of the algorithm’s steps. Usually do is initialised
as -V’(x,)/~Vf(xO)~, and typical values for E and p are
E = 1.0 and p = 0.2. Given the pair (x,, d,) we compute
(x ,I + , , d,, + ,) in the following manner. Define

cc=max{O, l+(l +E)dTVf(x,)}

6= -EVf(x,)+ad,

and use these to compute d, + , and x,, + , from the equations

d n+l =Wl

x n+l =x,+/4f(x,)--C)dn+l.

The parameter CL is, by definition, guaranteed to be non-
negative, and it is defined so that if the angle between d, and
-Vf(x,) is less than 90” and IVf(x,)l is large, or if the angle
is very close to O”, then the algorithm should follow the
negative gradient instead of crossing back and forth over it
in a zigzag fashion reminiscent of steepest-descent methods
in valleys.

To find a global minimum using the Sniffer algorithm
we successively compute pairs (xi, d,), (x,, d,), By
computing the value offat the points x,, x2, . . . we are then

able to investigate the function fs minima. The discrete
“walks” produced by the Sniffer algorithm possess properties
similar to those of Griewank’s search trajectories. They
slow down at lower levels and speed up at higher levels thus
wasting little time minimizing the function.

3. A VARIATION OF THE DONNELLY
AND ROGERS SNIFFER ALGORITHM

In an attempt to improve the performance of the original
Sniffer algorithm, we have enabled the algorithm to
repeatedly alter its own parameters based on the
preliminary results of its continuing search. These modifica-
tions, the result of many numerical experiments on several
different “test functions,” in no way constitute a new
algorithm, but rather the incorporation of some limited
“intelligence” into the existing one. In this section we
provide complete descriptions of, and at least partial
justifications for, all of these modifications. The changes we
have made generally increase the speed at which the Sniffer
algorithm finds the global minimum of the test functions.

As stated in Section 2, the original Sniffer algorithm
requires the user to provide initial values for several
(program) parameters. These include an initial value for c
(an estimate of the minimum value of the function), E
(a parameter measuring the algorithm’s sensitivity to the
function’s gradient), and ~1 (a parameter that is used to
determine the algorithm’s step size). The original algo-
rithm’s performance is intimately connected with the choice
of all of these parameters. Ifs is chosen close to zero then the
gradient information will be largely ignored and the particle
will move in a direction, d, + r, close to the direction d,. If
E is relatively large, the particle will move in the direction of
-Vf(x,), the negative gradient. The current function value
and the choices of c and p all influence the step size. Iff(xn)
is close to the value c, or if p is small, then the step size will
be small. However, iff(x,) is far from c, or if p is large, then
the step size will be large. In the original implementation of
the algorithm, c was chosen to be slightly smaller than a
known value off, the parameter E was generally chosen to
be 1.0, and p was set at 0.2. Clearly, these initial values
cannot be adequate for every optimization problem, and
even when they are initially adequate, they are unlikely to
remain so for the entire optimization process.

The first attempts at modifying the algorithm were of an
interactive nature. As the functionfapproached the value c,
c was lowered. Also, while observing the motion of the
particle, E and p were altered to either avoid known local
minima or to investigate wells containing possible global
minima. It was also observed that some trajectories, after
having reached a fairly low value off, proceeded to “higher
ground’ for too many iterations. After a number of itera-
tions, the algorithm was restarted at the point x, with the
lowest function value encountered and given a random

30 BUTLER AND SLAMINKA

direction vector or the direction of the negative gradient of
fat x,. We have now incorporated some of these heuristics
into the algorithm itself.

By enabling the algorithm to alter its own parameters, we
were able to gradually reduce the area within which the
algorithm searches for a global minimum and, hence, to
increase the speed with which it finds a global minimum. (In
Simulated Annealing a similar reduction of area is affected
by reducing the “temperature.“) The present variation of the
Sniffer algorithm uses the “original” algorithm (as defined
in [6,3]) as a subroutine called MINIM. The subroutine
MINIM is given an initial position at which to start
searching for the global minimum (either a “random” posi-
tion at the very beginning of the algorithm’s use, or the
position of the best minimum found so far), and is then
allowed to run for a fixed (maximum) number of steps
called MAXSTEPS. Once the subroutine MINIM has been
run, the values of E, p, c, and MAXSTEPS are all adjusted
as follows:

EtEXM,

P + PLIM,

MAXSTEPS t Msteps x MAXSTEPS

C 4- (C + min)/2 - Cbias

Cbias + Cbias /Mbias .

In order to make the algorithm increasingly sensitive to
the local gradient as more steps are taken (and hence as we
hopefully come closer to finding a global minimum), the
value of E is increased-in the present algorithm we have
simply multiplied by a constant factor M,. To reduce the
area in which MINIM searches for the global minimum we
also reduce the value of p-this corresponds to reducing
the step size and is achieved in our present algorithm by
dividing the value of p by the factor M,. To guarantee that
the region searched by MINIM is bounded, we also intro-
duce a maximum allowable step size pmax. This parameter is
the maximum value allowed for the term p(f(x,) - c) in the
equation x, + i =x, + p(f(x,,) - c) d,+ i. In order to give
the MINIM subroutine more time to search the reduced
area, we increase MAXSTEPS (the maximum number of
steps that MINIM will be allowed to take) by multiplying
by the factor Msteps. Finally, the value of c is adjusted using
the lowest value of the function that has been found so far.
The initial value of c is set at a somewhat arbitrary value
(- 100.0 for the present numerical experiments), and this
value is then periodically adjusted by the program
according to the best information that the algorithm has as
to the exact value of the minimum. If we denote the best
minimum found so far by min, then the value of c is com-
puted using c = (c + min)/2 - Cbias. Here Cbias is a positive
number (set initially to Icl/lO) that is used to ensure that the

value of c is always below the best minimum found so far. As
with all the other parameters, we also adjust the value of
cblas after each call of the subroutine MINIM. In the present
program we repeatedly decrease the size of cblas by dividing
it by Mbias.

The values of the constants used in the present variation
of the Sniffer algorithm were chosen after performing many
numerical experiments and are as follows: M, = 1.1,
M, = 1.7, Msteps = 1.1, and Mbias= 1.1. (We note that in [9]
Griewank suggests altering his gradient sensitivity
parameter, e, by multiplying by 1.1 in order to reduce the
probability that his search trajectories will leave the search
area.)

In order to compare the results of [l] with those
obtained using our variation of the Sniffer algorithm, we
attempted to use the very same stopping criterion. The algo-
rithm was considered to have found the global minimum if
the minimum value it found, minfound, when compared with
the true minimum, mintrue, satisfied the following condition:

In the present paper we have used the above variation of
the Sniffer algorithm to find the global minimum of each of
several standard test functions. In the process of producing
the present variation several other similar schemes were
tried and tested. The results of these preliminary tests
motivated the choice of the present constants used to adapt
the parameters that appear in the algorithm. Even though
the present constants give excellent results, they are very
unlikely to be optimum-further numerical studies need to
be performed. The method by which we change the algo-
rithm’s parameters is also an area in which many other
schemes could be employed. However, even using our
simplistic approach, the performance of our variation (as
we see in the next section) compares very favorable with
that of Simulated Annealing.

4. OPTIMIZATION FUNCTIONS
AND RESULTS

The seven test functions described by Dixon and Szego
were intended both to thwart global minimizers and to
model minimizations which occur in practice. These
functions have either very steep walls surrounding the local
minima or an enormous number of local minima. For
completeness we include a detailed description of these
functions.

SHEKEL'S FAMILY (Fl,F2,and F3).

Ax)= -i;, (x-a,)T;_a)fc.> I I

SNIFFER GLOBAL OPTIMIZATION ALGORITHM 31

wherex=(x,,x,, x3, x4JT, a, = (ajl, ajz, ai3, ai4JT, and the
region of interest is 0 d xj < 10, for j = 1, 2, 3,4. The
function Fl has m = 5, F2 has m = 7, and F3 has m = 10.
The global minimum value for Fl is - 10.1532, for F2 is
- 10.40294, and for F3 is 10.53641: -

i a, c,

1 4.0 4.0 4.0 4.0 0.1

2 1.0 1.0 1.0 1.0 0.2

3 8.0 8.0 8.0 8.0 0.2

4 6.0 6.0 6.0 6.0 0.4

5 3.0 7.0 3.0 7.0 0.4

6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.6

8 8.0 1.0 8.0 1.0 0.7

9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

HARTMAN’S FAMILY (F4, F5).

f(x) = - c c;e-$=, e-PI/Y,
i= 1

where X= (~1, x,), pi= (pii, ...,pin), aj= (ail, ain),
and the region of interest is 0 <xi < 1 for i = 1, n. The
global minimum value for F4 is -3.86278, and for F5 is
- 3.32237. F4 has n = 3:

i a!/ C, P’J

1 3.0 10.0 30.0 1.0 0.36890 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.46990 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.10910 0.8732 0.5541
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

F5 hasn=6:

i ai/ c,

1 10.00 3.00 17.00 3.50 1.70 8.00 1.0
2 0.05 10.00 17.00 0.10 8.00 14.00 1.2
3 3.00 3.50 1.70 10.00 17.00 8.00 3.0
4 17.00 8.00 0.05 10.00 0.01 14.00 3.2

i P,j

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

BRANIN (F6).

f(x,, X2)=a(x,-bx~+cx,-d)2
+e(l-f)cosx,+e,

where a = 1, b = 5.1/(4n2), c = 5/n, d= 6, e = lO,f= 1/(8x),

581/99/I-3

and the region of interest is - 5 6 x1 < 10 and 0 6 x2 6 15.
The globai minimum value for F6 is 0.39789.

GOLDSTEIN AND PRICE (F7).

+ 3x: - 14x, + 6x, x2 + 3x;)]

x [30+(2~,-3x,)~ (18-32x,

+ 12x; + 48X, - 36x, x2 + 27x;)],

where the region of interest is - 2 d x1, x2 d 2. The global
minimum value for F7 is 3.0.

Table I shows the initial parameter values used for the
Sniffer algorithm. Sniffer 1 denotes the algorithm in which
the parameter values were chosen to achieve the greatest
success percentage using the lowest number of function
evaluations. Sniffer 2 denotes the algorithm in which the
success percentage was intended to equal that of Simulated
Annealing with the least number of function evaluations.

In [1, p. 2651 one of the principal free parameters, T,,
was “essentially chosen on the basis of the variance of a
random sample” and the other, xT, was chosen “by trial
and error.” To provide a methodology as similar as possible
to that used by Vanderbilt and Louie, we chose the required
program parameters on the basis of a small number of
numerical experiments. The program parameters E, p, pmax,
and MAXSTEPS were chosen in two stages. As an initial
approximation we set E = 1.0, p= 0.2, P,,~ = ,u, and
MAXSTEPS = 100. For Sniffer 1, we perturbed these values
one at a time to determine the effect of increasing or
decreasing that parameter on the success rate and then used
the information obtained to produce a single set of
parameter values for each function. For functions Fl, F2,
and F3, this method very quickly produced the values
shown in Table I. For the functions F5 and F6 a large
change was made to MAXSTEPS, and for F4 and F7,
increasing the gradient sensitivity parameter also improved
performance.

TABLE I

Parameter Values Used in the Minimization of the Seven Standard
Test Functions

Sniffer 1 Sniffer 2

Function E p pmar MAXSTEPS E p p,,, MAXSTEPS

Fl 1.1 0.15 0.17 95 t.4 0.19 0.19 22
F2 1.7 0.24 0.24 104 1.9 0.25 0.25 24
F3 1.4 0.25 0.25 95 1.6 0.24 0.24 44
F4 20.0 0.01 0.50 20 20.0 0.01 0.50 20
F5 1.0 0.10 0.20 22 1.0 0.05 0.10 5
F6 1.0 0.10 1.00 5 1.0 0.10 1.00 5
Fl 4.0 0.80 0.80 10 4.0 0.80 0.80 10

32 BUTLER AND SLAMINKA

TABLE II

Comparison of the Efficiency of Simulated Annealing to
That of Sniffer

Simulated annealing” Sniffer 1 Sniffer 2

Function Percent Function Percent Function Percent

Function Evaluations Success Evaluations Success Evaluations Success

Fl 3910 54 3695 90 1040 54

F2 3421 64 2655 96 1092 64

F3 3078 81 3070 95 1589 81

F4 1224 100 534 99 534 99

F5 1914 62 1760 99 364 62

F6 557 100 205 loo 205 100

F7 1186 99 664 100 664 100

*The values given for Simulated Annealing are from Vanderbilt and
Louie [l].

Starting from the parameter values used by Sniffer 1, we
attempted to make minimal changes in order to match
Simulated Annealing’s success rates. No changes were
necessary for the parameters for functions F4, F6, and F7
because the success rates were very close to 100% for both
methods. Our major strategy for the remaining functions
was to decrease the total number of steps used while at the
same time approximating the success rates of Simulated
Annealing as accurately as possible. We achieved this by
decreasing MAXSTEPS and making minor perturbations
to E, P, and pmax. Only a small number of numerical
experiments were necessary to obtain the very same success
rates as those of Simulated Annealing.

Table II gives the number of function evaluations
(including those needed for the gradient calculations) based
upon 100 runs for each function and the percentage of
success.

Two things are apparent from Table II. First, the Sniffer 1
success rate is at least 90% for these seven test functions
and, except for Fl, the success rate is at least 95%. In all
cases this compares favorably with Simulated Annealing’s
success rate. Perhaps the most demanding function is F3 on
which Sniffer 1 uses essentially the same number of function
evaluations as Simulated Annealing, but achieves a 14%
higher success rate. Second, Sniffer 2 achieves success rates
comparable to those of Simulated Annealing, but with fewer
function evaluations, at worst 56 % of the number of evalua-
tions Simulated Annealing performed for function F7, and
at best 19 % for function F5.

These results indicate that the Sniffer algorithm is a viable
optimization algorithm for continuous variables. Other
work [7] shows that for optimization problems involving
hundreds of variables, the Sniffer’s advantage over other
optimization methods is even more striking.

REFERENCES

1. D. Vanderbilt and S. G. Louie, J. Comput. Phys. 56, 259 (1984).

2. L. C. W. Dixon and G. P. &ego, in Towards Global Optimization 2
(North-Holland, New York/Amsterdam, 1978) p. 1.

3. J. W. Rogers and R. A. Donnelly, J. Optim. Theory Appl. 61, 111 (1989).

4. R. A. Donnelly, A discrete dynamical system for conformational energy
oprimizarion (unpublished).

5. M. L. Papay, GLIDE Program Optimization Results, TRW Defense
Systems Group, San Bernardino, CA, 1989 (unpublished).

6. R. A. Donnelly and J. W. Rogers, Int. J. Quantum Chem. 22, 507 (1988).

7. E. E. Slaminka and K. D. Woerner, Celestial Mech. Dyn. Astron. 48, 347
(1990).

8. J. Rogers, R. A. Donnelly, E. E. Slaminka, and R. A. R. Butler, Bounded
orbits and chaotic behavior for a dynamical system used in global
optimization, 1990(unpublished).

9. A. 0. Griewank, J. Optim. Theory Appl. 34, 11 (1981).

